Long-term functional recovery and compensation after cerebral ischemia in rats
نویسندگان
چکیده
Cerebral ischemia is one of the most common causes of disabilities in adults and leads to long-term motor and cognitive impairments with limited therapeutic possibilities. Treatment options have proven efficient in preclinical models of cerebral ischemia but have failed in the clinical setting. This limited translation may be due to the suitability of models used and outcomes measured as most studies have focused on the early period after injury with gross motor scales, which have limited correlation to the clinical situation. The aim of this study was to determine long-term functional outcomes after cerebral ischemia in rats, focusing on fine motor function, social and depressive behavior as clinically relevant measures. A secondary objective was to evaluate the effects of an anti-inflammatory treatment (interleukin-1 receptor antagonist (IL-1Ra)) on functional recovery and compensation. Infarct volume was correlated with long-term (25 days) impairments in fine motor skills, but not with emotional components of behavior. Motor impairments could not be detected using conventional neurological tests and only detailed analysis allowed differentiation between recovery and compensation. Acute systemic administration of IL-1Ra (at reperfusion) led to a faster and more complete recovery, but delayed (24h) IL-1Ra treatment had no effect. In summary functional assessment after brain injury requires detailed motor tests in order to address long-term impairments and compensation processes that are mediated by intact tissues. Functional deficits in skilled movement after brain injury represent ideal predictors of long-term outcomes and should become standard measures in the assessment of preclinical animal models.
منابع مشابه
Protective Effects of Enriched Environment Against Transient Cerebral Ischemia-Induced Impairment of Passive Avoidance Memory and Long-Term Potentiation in Rats
Introduction: Enriched Environment (EE), a complex novel environment, has been demonstrated to improve synaptic plasticity in both injured and intact animals. The present study investigated the capacity of an early environmental intervention to normalize the impairment of passive avoidance memory and Long-Term Potentiation (LTP) induced by transient bilateral common carotid artery occlusion (2-...
متن کاملPositive Effects of Post-ischemic Forced Treadmill Training on Sensorimotor and Learning Outcomes Following Transient Global Cerebral Ischemia
ABSTRACT Background and objectives: Stroke is one of the leading causes of death and long-term acquired disability. It is of great importance to seek ways for improving motor, sensory, and cognitive function after stroke and brain injury. In this regard, therapeutic exercise is the most commonly used method of rehabilitation that can significantly reduce the severity of functional ...
متن کاملProtective effect of α-terpineol against impairment of hippocampal synaptic plasticity and spatial memory following transient cerebral ischemia in rats
Objective(s): Cerebral ischemia is often associated with cognitive impairment. Oxidative stress has a crucial role in the memory deficit following ischemia/reperfusion injury. α-Terpineol is a monoterpenoid with anti-inflammatory and antioxidant effects. This study was carried out to investigate the effect of α-terpineol against memory impairment following cerebral ischemia in rats. Materials a...
متن کاملIntensification of brain injury and blood-brain barrier permeability by short-term hypertension in experimental model of brain ischemia/reperfusion
Introduction: Arterial hypertension is one of the causes of stroke, and as one of the vasculotoxic conditions intensifies ischemic stroke complications. The aim of the present study was to analyze the effects of short-term cerebral hypertension on ischemia/reperfusion injury and pathogenesis of ischemic stroke. Methods: The experiments were performed on three groups of rats (N=36) Sham, cont...
متن کاملImprovement in Memory and Brain Long-term Potentiation Deficits Due to Permanent Hypoperfusion/Ischemia by Grape Seed Extract in Rats
Objective(s): Cerebral hypoperfusion/ischemia (CHI) is a neurological disease where impaired hippocampus electrical activity and cognition caused by a serial pathophysiological events. This study aimed to evaluate the effects of chronic oral administration of grape seed extract (GSE) on passive avoidance memory and long-term potentiation (LTP) after permanent bilateral common carotid arteries...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 270 شماره
صفحات -
تاریخ انتشار 2014